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Multigrid methods are well established as one of the most effi-
cient algorithms for the solution of the discrete linear systems 

that arise from models of diffusive phenomena (e.g., heat conduction, 
neutron diffusion, single-phase saturated flow). In particular, their 
solution cost grows only linearly with the size of the discrete system. 
These methods achieve this optimal scaling through the recursive use 
of successively coarser discrete problems (i.e., a sequence of coarse-
grid discrete operators) in conjunction with smoothing on each level 
(e.g., a single Gauss-Seidel iteration on each level) to damp the highly 
oscillatory errors associated with each grid.

However, developing a robust multigrid algorithm with optimal
algorithmic scaling for models with highly discontinuous and
anisotropic coefficients is a significant challenge. Here a naive
approach based on creating a hierarchy of discrete problems through
rediscretization at coarser resolutions leads to a fragile algorithm
with a convergence rate that depends on the magnitude of the jumps 
in the diffusion coefficient. Thus, a fundamental advance in multigrid
methods was the development of Black Box methods that use the 
fine-scale discrete model to construct, through a variational
principle, the successively coarser coarse-grid operators [1]. In 
fact, robust methods for both structured grids, such as Black Box 
Multigrid (BoxMG), and unstructured grids, such as Algebraic 
Multigrid (AMG), use this variational approach.

Despite this powerful technique, additional constraints on key 
elements of the multigrid algorithms may complicate its design. 
For example, it may be desirable to preserve the cell structure in the 
hierarchy of discrete operators. This desire often arises with cell-

based finite volume methods, and with cell-based adaptive mesh 
refinement. Unfortunately, a straightforward application of the 
BoxMG method [1], when coarsening by a factor of two, does not 
preserve the cell-based structure.

To preserve the cell-based structure and maintain a fixed operator 
complexity we proposed a variant of BoxMG that uses coarsening 
by a factor of three [2]. This cell-based coarsening by three is shown 
schematically in Fig. 1(top, left), where the coarse-grid cells are 
shown by the darker lines, and coarse-grid cell-center unknowns are 
shown as the darker circles. This coarsening strategy ensures that 
the cell-centered unknowns are nested on coarser grids and exposes 
interesting connections between BoxMG, smoothed-aggregation 
based AMG, and Multiscale Finite Elements. The key components 
of the new BoxMG algorithm follows.

• Galerkin Coarse-Grid Operator. Variational coarsening, 
employing the Galerkin coarse-grid operator, can be shown to 
be optimal in the sense that it minimizes the error in the range 
of interpolation. Moreover, this approach makes no assumption 
about the form of the coarse-scale model. This feature makes 
it ideal for problems with fine-scale spatial structure in the 
coefficients, as rediscretization fails to capture the influence of this 
structure at coarser scales.

• Operator-Induced Interpolation. We developed a generalization 
of the operator-induced interpolation methodology for coarsening 
by two, to coarsening by three. First we split the points into coarse 
and fine points, as shown in Fig.1(top,right) with interpolation of 
coarse points given by the identity. The fine points are then split 
into two types: fine points that are embedded in coarse-grid lines 
(shown as small boxes in Fig.1, bottom, left), and fine points that 
are in the interior of a coarse-grid cell (shown as small hexagons 
in Fig.1, bottom, right). We then average the discrete operator at 
these fine-grid points to define the entries in the corresponding 
block matrices (4 x 4 and 2 x 2 systems) that are inverted to yield 
the interpolation weights.
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• Pattern Relaxation. Although standard smoothing techniques, 
such as colored Gauss-Seidel are applicable here, in many 
situations these methods require an extra sweep of points at the 
top and right boundaries. To address this weakness we developed a 
new relaxation technique dubbed pattern relaxation. This smoother 
is motivated by the structure of the interpolation operator and 
uses a four-color block Gauss-Seidel scheme that corresponds to 
the blocks shown schematically in Fig.1. An interesting aspect of 
pattern relaxation is its potential for coarsening by larger factors n, 
as is common in many multiscale methods.

To demonstrate the robustness of the proposed BoxMG method 
with respect to discontinuous diffusion and removal coefficients, 
different types of boundary conditions, and grid dimensions that are 
not optimal multiples of three, we considered a suite of test 
problems. For example, we considered a simple Poisson problem 
with favorable grid dimensions (3m and 3m+2), as well as 
unfavorable grid dimensions (3m+1), where m is an integer grid-size 
parameter. Within each of these categories the convergence rate was 
shown to be independent of m. To explore discontinuous diffusion 
coefficients we considered a thin layer problem as well as a variant of 
the classic checkerboard problem. Performance in these cases was 
similar to the simple Poisson problem with an average convergence 
factor for the largest problems of approximately 0.12. In addition, 
we demonstrated the effectiveness of the algorithm for mixed 
boundary conditions.

We have developed a robust multigrid method that uses coarsening 
by three to preserve the cell-based structure of the fine-grid problem. 
In this method we generalized the concept of operator-induced 
interpolation and developed a new relaxation method dubbed 
pattern relaxation. In the future we will investigate the extension 
of pattern relaxation to anisotropic problems. In addition, we 
will explore the connections of this new multigrid method with 
smoothed-aggregation based AMG and multiscale methods.

Fig 1. Cell-based coarsening by three is shown in the upper left. The struc-
ture of the operator-induced interpolation is shown schematically by the 
sequence of figures on a coarse-grid cell: injection of nested points in the 
upper right, followed by a block update of points embedded in
coarse-grid lines (lower left) and finally the block update of fine-grid 
points contained in a coarse-grid cell (lower right). This operator-
induced interpolation is critical to the method’s robustness.


